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Abstract: The goal of clinical practice education is to develop the ability to apply theoretical knowl‑
edge in a clinical setting and to foster growth as a professional healthcare provider. One effective
method of achieving this is through the utilization of Standardized Patients (SP) in education, which
familiarizes students with real patient interviews and allows educators to assess their clinical per‑
formance skills. However, SP education faces challenges such as the cost of hiring actors and the
shortage of professional educators to train them. In this paper, we aim to alleviate these issues by
utilizing deep learning models to replace the actors. We employ the Conformer model for the im‑
plementation of the AI patient, and we develop a Korean SP scenario data generator to collect data
for training responses to diagnostic questions. Our Korean SP scenario data generator is devised
to generate SP scenarios based on the provided patient information, using pre‑prepared questions
and answers. In the AI patient training process, two types of data are employed: common data and
personalized data. The common data are employed to develop natural general conversation skills,
while personalized data, from the SP scenario, are utilized to learn specific clinical information rel‑
evant to a patient’s role. Based on these data, to evaluate the learning efficiency of the Conformer
structure, a comparison was conducted with the Transformer using the BLEU score and WER as
evaluation metrics. Experimental results showed that the Conformer‑based model demonstrated a
3.92% and 6.74% improvement in BLEU andWER performance compared to the Transformer‑based
model, respectively. The dental AI patient for SP simulation presented in this paper has the potential
to be applied to other medical and nursing fields, provided that additional data collection processes
are conducted.

Keywords: clinical medicine; artificial intelligence; dental informatics; conformer

1. Introduction
Recent sociodemographic shifts, advances in science and technology, and heightened

interest in health are rapidly transforming the healthcare environment globally. As the
health management environment reaches a major turning point, the demand for medi‑
cal personnel with exceptional job skills is increasing. Clinical practice education aims
to cultivate various qualities for effectively functioning as competent medical personnel
based on theoretical knowledge [1]. One of the practical education methods for this is
simulation‑based medical education. Generally, simulation‑based education is actively
utilized in the fields of medical and nursing education as it complements limited clinical
training and provides a safe environment for practice in a setting similar to real‑world clin‑
ical situations. Compared to traditional lecture‑based education, the biggest advantage of
simulation education is that it not only improves learners’ knowledge, but also effectively
enhances problem‑solving abilities and clinical performance skills [2].
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Standardized patient (SP) is one of the simulation education methods. It utilizes ac‑
tors trained to reproduce an actual patient’s medical history and physical examination
results to educate and evaluate students’ clinical performance skills. SP is a reliable tool
for effectively conducting interviews with real patients who have no substitute in student
and resident education, and for assessing their clinical practice skills [3]. Due to these ad‑
vantages, SP techniques are actively used in Objective Structured Clinical Examinations
(OSCE) around the world. However, utilizing actors as SPs for practice comes with the
requirement of expensive labor costs, dedicated manpower, and significant time for actor
training [4]. As deep learning has advanced, there have been reports of research utilizing it
for disease diagnosis [5], but applications for clinical diagnosis simulation are rare. In this
study, we aim to utilize deep learning to alleviate the reliance on actors in the SP method.

Deep learning has become the core technology of the fourth industrial revolution
thanks to advances in algorithms, increased computing power, and the use of large‑scale
datasets. Specifically, in the field of Natural Language Processing (NLP), which enables
computers to understand human language, the introduction of deep learning has demon‑
strated its superior performance compared to existing rule‑based and statistical methods.

Recurrent Neural Network (RNN) is a structure that carries information from the pre‑
vious time step to the next, marking the beginning of neural‑network‑based continuous
data processing. RNN has a long‑term dependency problem, where vanishing gradients
occur during backpropagation as the input sequence lengthens; Long Short‑Term Mem‑
ory (LSTM) and Gated Recurrent Unit (GRU), which were proposed later, introduced a
memory cell, which mitigated the long‑term dependency problem [6,7].

RNN‑based systems are utilized for constructing encoders and decoders in Sequence‑
to‑Sequence (Seq2Seq) models. These models are applied in various areas, including ma‑
chine translation, speech‑to‑speech translation, and text summarization, where the goal
is to transform an input sequence into a sequence in another domain [8–10]. However,
Seq2Seq models have a limitation, as input information may be lost during the process of
compressing the data into a fixed‑size context vector, which is then passed to the decoder.
To address this issue, attention mechanisms have been introduced [11,12].

In the attention mechanism, the decoder references the encoder’s information related
to the predicted word each time it generates the current output word. This approach helps
alleviate the issue of information loss by providing additional contextual information for
each word. The attention mechanism’s introduction breathed new life into NLP and in‑
fluenced model architecture. The Transformer [13] is an encoder–decoder structure that
replaced the RNN‑based architecture with an attentionmechanism. This design allows for
parallel processing and computation of word relationships, leading to improved machine
translation performance and accelerated learning speed.

The remarkable architecture of the Transformer has applications beyond language‑
related fields, such as large‑scale language models and Text‑to‑Speech (TTS), extending to
image processing domains aswell [14–17]. Recently, in the domain of audio signal process‑
ing, the Conformer model has been introduced [18], which is a combination of a Convo‑
lutional Neural Network (CNN) and Transformer. The Conformer, capable of capturing
both local and global features of data, has been applied to speech recognition and speech
separation, demonstrating superior performance compared to the Transformer and attract‑
ing significant research interest [18,19]. The Conformer’s comprehensive data feature cap‑
ture abilities are anticipated to be effective in not only speech but also NLP. Accordingly,
we developed an AI patient model that employs the Conformer structure.

The AI patient model learns from text‑based conversational data, divided into com‑
mon and personalized data that reflect the unique aspects of doctor–patient communica‑
tion. Doctor–patient communication, focusing on the patient’s expression of symptoms
and the doctor’s diagnostic actions, plays a critical role in the treatment process, as diag‑
nosis and treatment outcomes may vary depending on the quality of communication [20].
The doctor must rely entirely on the patient’s description to evaluate their condition; how‑
ever, the burden of expressing their symptoms and fear of the doctor may hinder smooth
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communication [21]. The doctor’s communication methods that can alleviate patient ten‑
sion include the use of verbal and non‑verbal behaviors [22,23]. To evaluate a doctor’s
ability to communicate effectively with patients, AI patients should learn to respond ap‑
propriately to small‑talk questions, not just those related to clinical diagnosis. Thus, we
use small talk, a typical conversational element, as common data so that AI patients can
suitably respond to the doctor’s verbal behavior. Personalized data includes the unique
clinical information of each patient. Given its association with the medical field, acquiring
actual medical interview data poses challenges due to the potential risk of personal infor‑
mation leakage. To address this problem, we introduce a synthetic data generator aimed
at collecting near‑real‑world, standardized patient diagnosis scenarios.

The contributions of this paper are summarized as follows: (1) We proposed a
Conformer‑based AI patient for dental clinical diagnosis simulation. (2) We suggested
a Korean synthetic data generator capable of creating Korean SP scenarios based on the
given SP information. (3) We utilized the Conformer, which has been primarily used in
speech processing, for Korean text and compared its performance with the Transformer,
known for its outstanding performance in the existing NLP domain.

The paper is structured as follows. In the next section, we present the AI patient
training data and the proposed Korean SP scenario data generator employed in this study.
We also outline the deep learning model architecture and hyperparameters used for AI
patient implementation, along with the performance evaluation of each model. Section 3
presents the results of the predicted answers generated by each model and provides a
discussion of these outcomes. Finally, in Section 4, we draw conclusions and present future
research directions.

2. Materials and Methods
2.1. Datasets for Korean Standardized AI patient

Weutilized twodatasets inAI Patient training. The first, commondata, is employed to
cultivate small‑talk skills, allowingmodels to engage in natural conversations with people.
The second is personalized data synthesized using our proposed SP scenario data gener‑
ator. Personalized data pertain to information about specific standardized patients that
the model aims to replicate. Descriptions of each dataset are presented in the subsequent
subsections.

Figure 1 provides an overview of the data utilized for AI patient training and the sce‑
nario simulation using the generated patient. As various SP data are produced through
the proposed data generator, each model learns both personalized and common data to
become standardized AI patients with distinct patient characteristics. These AI patients
can flexibly respond not only to clinical diagnosis questions but also to conversational ex‑
changes aimed at easing the atmosphere.

2.1.1. Common Data
During actual patient interviews, the conversation does not always focus solely on

diagnosis. We trained the model on common data, including small talk, to enable it to
naturally respond to casual discourse that doctors use to alleviate patient tension. Com‑
mon data were collected from AI‑Hub, a public data provision website for AI operated
by Korean government agencies [24]. Common data encompass not only small talk but
also COVID‑19 counseling data from the Korea Centers for Disease Control and Preven‑
tion. Due to the nature of disease‑related counseling, questions about patient information
or symptoms appear, which can help the model learn responses related to general conver‑
sation and basic medical history.
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Figure 1. Overview of the standardized AI patient clinical diagnosis simulation. The symbol (*) in
the figure represents the number of SP models to be generated.

2.1.2. Data Generator for Standardized Patient Scenario
Owing to the nature of data associated with the medical field, collecting interview

data from actual dentists proved to be challenging. Moreover, Korean is less prevalent
in academia compared to English, further complicating the task of gathering relevant data.
Consequently, we collected data for simulation by implementing a Korean data generator
that creates the doctor’s questions and patient’s answers based on several patient diagnosis
scenario scripts provided to actors. An overview of the generator is depicted in Figure 2 be‑
low.
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Whenpatient information is provided as input, the data generator produces questions
and answers for each category that reflect the patient information. By inputting various
patient details into the data generator, corresponding standardized patient scenarios can
be created.

Our data generator consists of fivemain types of questions: patient identification, clin‑
ical symptoms, medical history, lifestyle, and diagnosis. Each question type has a subtype,
leading to a total of 19 detailed categories. The question types and subtypes are listed
in Table 1, while the content of the questions appearing in each subtype can be found in
Table 2.

Table 1. The question types and subtypes of the proposed data generator.

Question Types Subtypes

Patient Identification
Name Identification
Age Identification

Clinical Symptoms

Sore Spot
Time of Onset

Pain‑inducing Factors
Pain Duration

The Intensity of Pain

Medical History

Medical History Listening
Medications Check

Dental History Listening
Experience of Anesthesia

Lifestyle Smoking Status
Alcohol Consumption Check

Diagnosis

Visual Inspection
Percussion Test
Mobility Test

Electrical Pulp Test
Pulp Thermal Test

Radiographic Examination

Table 2. Representative examples of questions for each subtype are shown. The blank space that
appears for age is filled with the age information of the input patient.

Question Types Language Examples

Name Identification
English What’s your name?
Korean 성함이어떻게되세요?

Age Identification English Are you ## years old?
Korean ##세맞으시죠?

Sore Spot English Which tooth hurts?
Korean 어디치아가아프세요?

Time of Onset
English When did this symptom start?
Korean 증상이언제부터시작됐나요?

Pain‑inducing Factors English When does your tooth hurt?
Korean 어떨때치아가아프시나요?

Pain Duration
English How long did the pain last?
Korean 통증이얼마동안지속되던가요?

The Intensity of Pain
English How much do you think the pain is out of 10?

Korean 통증이 10점만점으로어느정도되는것
같으세요?
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Table 2. Cont.

Question Types Language Examples

Medical History Listening
English Are you being treated at any other hospital

besides the dentist?

Korean 치과말고다른병원에서치료받고계신게
있나요?

Medications Check
English Do you take any medicine regularly?
Korean 주기적으로드시는약있으세요?

Dental History Listening English What kind of dental treatment have you had?
Korean 어떤치과치료받아보셨나요?

Experience of Anesthesia English Have you ever been anesthetized during
dental treatment?

Korean 치과치료할때마취하신적있으세요?

Smoking Status English Do you smoke?
Korean 담배피우시나요?

Alcohol Consumption Check English Do you drink often?
Korean 음주를자주하시나요?

Visual Inspection English I’ll check it out myself.
Korean 직접확인해보도록하겠습니다.

Percussion Test
English I’ll pat the tooth on the side that hurts.
Korean 아픈쪽치아를두드려보겠습니다.

Mobility Test English I’ll shake your sore teeth.
Korean 아프신치아를흔들어보겠습니다.

Electrical Pulp Test

English Let’s do a dental nerve test using electricity.

Korean 전기를이용해서치아신경검사를
해보겠습니다.

Pulp Thermal Test English We will examine the dental nerve response
according to temperature.

Korean 온도에따른치아신경반응을검사하겠습니다.

Radiographic Examination
English I’ll take a radiograph to check for

inflammation.

Korean 염증확인을위해방사선사진을찍어
보겠습니다.

Ourdata generator created questions by applying data variation techniques to the doc‑
tor’s questions found in the diagnostic scenario script. We used a data variation approach
to augment our dataset and train the model on a diverse range of syntactic representa‑
tions. Data variation techniques include affix transformation, word transformation, and
independent word addition. The affix transformation is a method that considers the char‑
acteristics of the Korean language. Unlike English, which is an isolating language, Korean
is agglutinative, meaning one or more morphemes are attached to the root of the word to
form a complete word. As a result, the meaning of sentences remains consistent, but var‑
ious syntactic expressions are possible through changes in the affix alone. This approach
helps generate a robust language model capable of handling different sentence expression
methods. Word transformation is a method of changing words in a sentence into other
similar words. This method allows the model to learn synonym expressions. Independent
Word Addition is a method of adding interjections, honorifics, and conjunctive adverbs
to a sentence, which are words that do not have a close relationship with other elements
of the sentence. This method helps the model identify non‑critical words on its own and
robustly deduce responses without additional Korean preprocessing, even if speech con‑
tains unnecessary words when designing AI patients combined with an automatic speech
recognition system in the future. Table 3 shows the results of applying the data variations.
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Table 3. The data variation types and application examples. Colored text indicates changes due to
the application of variations.

Data Variations Language Examples

Affix Transformation
Original English What’s your name?

Korean 성함이어떻게되세요?

Variation
English What is your name?
Korean 성함이어떻게되시나요?

Word
Transformation

Original English When did the pain start?
Korean 언제부터통증이있었나요?

Variation
English When did you start feeling symptoms?
Korean 언제부터증상이느껴졌나요?

Independent Word
Addition

Original English How much alcohol do you usually drink?
Korean 평소에술은얼마나드세요?

Variation
English Sir, how much alcohol do you usually drink?
Korean 선생님,평소에술은얼마나드세요?

2.2. Deep Learning for Standardized AI patient
OurAI patient is a dialogue system. Two representativemethods for implementing di‑

alogue systems include the retrieval‑based model and the generative model. The retrieval‑
based model selects stored responses to pre‑prepared queries, ensuring that there are no
grammatical mistakes in inference results. However, this approach is limited as it cannot
process questions without a predefined response. In contrast, the generative model can
generate responses based on the learned data for unexpected questions [25]. We adopt
a generative model structure to implement AI patients capable of generating responses
without being restricted by input questions. The structure and hyperparameters of the
generative model used are detailed in the subsequent subsections.

2.2.1. Transformer
The Transformer architecture has brought significant changes to the existing RNN‑

based time series data processing. Although the sequential characteristics of RNN‑based
neural networks have the advantage of reflecting information fromprevious points in time,
these characteristics dilute the advantages of GPU computation because they prevent par‑
allelization of data processing. Furthermore, as the input sequence lengthens, it can lead to
the vanishing gradient problem, where information is not transferred to the earlier vectors
during backpropagation. Although studies into LSTM, GRU, and attention mechanisms
have alleviated these problems, the sequential characteristics of RNN still remain.

The Transformer, like an RNN‑based Seq2Seq model, is composed of an encoder and
a decoder but does not employ RNN. To alleviate potential issues with traditional RNN‑
based models, the Transformer introduces techniques such as multi‑head self‑attention,
position‑wise feedforward neural networks, and positional encoding. Multi‑head self‑
attention refers to performing self‑attention operations in parallel for the specified number
of heads. The self‑attention mechanism obtains query (Q), key (K), and value (V) vectors
fromeachword vector, and then uses these vectors to performattention operations to calcu‑
late the association between eachwordwithin the input sequence. This approach performs
parallel operations on the words in the sequence, unlike RNN, which performs sequential
operations. As a result, it can alleviate long‑term dependency issues and enable the model
to capture global context information within the sentence. The position‑wise feedforward
neural net takes the output of the multi‑head self‑attention as input and applies a fully
connected layer and activation function. It is similar to a standard feedforward network
(FFNN) and enables parallel processing, which results in the advantage of improved com‑
putational complexity. The Transformer receives all information at once, which can cause
it to disregard the order of elements within the input sequence. To address this issue, posi‑
tional encoding adds information about the position of each word to its embedding vector
using sinusoidal functions. This enables themodel to consider the order of elementswithin
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the sequence during processing. All these techniques are crucial factors that have enabled
the Transformer to outperform RNN‑based models. The structure of the Transformer is
shown in Figure 3, and the explanation of the Korean Word Tokens represented in the
figure is presented in Section 2.2.3.
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2.2.2. Conformer
Thanks to self‑attention, the Transformer has the ability to model global context infor‑

mation, but it lacks the ability to extract granular local feature patterns. On the other hand,
CNN can extract local feature information such as edges or shapes of images through ker‑
nel filters, but larger models are required to capture global information. The Conformer is
a structure designed to combine the local information capture function of CNN with the
global information capture function of the Transformer. The Conformer encoder consists
of a multi‑head self‑attention module, a convolution module, and a feed‑forward mod‑
ule surrounding them. The standard Conformer encoder consists of a multi‑head self‑
attentionmodule, a convolutionmodule, and amacaron‑shaped feed‑forwardmodule [18].
To ensure stable training even as the model depth increases, pre‑norm residual units [26]
and dropout are applied to all modules of the Conformer. For example, the multi‑head
self‑attention module in the Conformer sequentially performs computations by placing
multi‑head self‑attention layers and dropout in the pre‑norm residual units. The convo‑
lution module starts with a pointwise convolution and Gated Linear Unit (GLU) activa‑
tion [27], followed by 1D convolution and batch normalization steps. Then, data features
are processed through swish activation [28] and pointwise convolution. The feed‑forward
module is composed of two linear transformations and a non‑linear activation function,
similar to the feed‑forward step in the Transformer model. However, it is distinguished
from the Transformer by adopting swish activation as an activation function. Figure 4
illustrates the structure of the standard Conformer encoder composed of these modules.
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The Conformer’s sandwich structure and half‑step feed‑forward layer were inspired
by Macaron‑Net [29], replacing the Transformer’s original feed‑forward layer in this man‑
ner. The Conformer block can be mathematically expressed using the following formula:

h′ = x + 1
2 FFNN(x),

h′′ = h′ + MHSA(h′),
h′′′ = h′′ + Conv(h′′ ),

y = Layernorm
(

h′′′ + 1
2 FFNN(h′′′ )

)
,

Here, x represents the input of the Conformer encoder block, and y represents the out‑
put of the block. FFNN stands for feed‑forward module, MHSA stands for multi‑headed
self‑attention module, and Conv stands for convolution module.

2.2.3. Korean Tokenization Text Embedding
In this paper, Korean sentences were tokenized based on morphemes, and a modi‑

fied version of the Mecab tokenizer called Mecab‑ko [30] was used for this purpose. Tok‑
enization in NLP refers to dividing a given corpus into specific units called tokens. This
includes dividing sentences into words or paragraphs into sentences. However, unlike En‑
glish, word tokenization in the Korean corpus is different. In English, independent words
can be distinguished based on white space, allowing word tokenization based on white
space. However, Korean is an agglutinative language, which means that even the same
word can be recognized as a different word depending on the attached morpheme. There‑
fore, it is not appropriate to tokenize based on white space. In Korean NLP, it is necessary
to tokenize based on morphemes that separate roots and morphemes. To do this, we use
Mecab‑ko, an adjusted version of the Japanese morphological analysis engine Mecab [31],
to create tokens based on morphemes, and perform embedding based on them.

In NLP, embedding is a crucial process that represents textual data as numerical vec‑
tors in a high‑dimensional space, enabling computers to understand and process natural
language data. This task is also referred to as an upstream task. In order to ensure high‑
quality results for downstream tasks, which are the main objectives of NLP, it is crucial
to have effective upstream tasks that capture rich context information of natural language
and represent it in vector space [14,32–34]. To achieve this, we employed the FastText al‑
gorithm [34] for text embedding in this study.

FastText is an embedding algorithm that was developed after Word2Vec [33] and
shares a similar embedding mechanism. However, unlike Word2Vec, which treats words
as indivisible units, FastText assumes that there are n‑gram units of words within a sin‑
gle word (e.g., tri‑grams “orange” = ora, ran, ang, nge). This approach allows FastText
to infer embedding values for out‑of‑vocabulary or misspelled words. FastText holds a
competitive edge over other word‑embedding techniques that cannot extract vectors for
out‑of‑vocabulary words.

We used the Gensim [35] FastText module to obtain embedding values for each word
using the FastText algorithm. The FastText hyperparameters were configured with vector
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size = 256,window size = 2,minimum count = 1, and trained for 20 epochs using skip‑gram and
hierarchical softmaxmethods.

2.2.4. Hyperparameters of Models
All deep learning models were implemented using the Transformer and Conformer

modules provided by Pytorch [36] and Torchaudio [37], respectively, and the hyperparam‑
eters applied to each model are shown in Table 4. We trained the models using the cross‑
entropy loss function and the Adam optimizer with learning rate = 5 × 10−4, β1 = 0.9,
β2 = 0.98, eps = 1 × 10−9, and early stopping was applied to prevent overfitting.

Table 4. Hyperparameters to consider for each model.

Hyperparameters Transformer Conformer

Word Embedding FastText FastText
Embedding Size (256) (256)
Hidden Size (256) (256)

Number of Encoder Layers (5) (4)
Number of Decoder Layers (5) (4)

Multi‑Head (8) (8)
FFNN Size (512) (512)
Dropout (0.4) (0.4)
Batch Size (256) (256)

Learning Rate
(
5 × 10−4) (

5 × 10−4)
Depthwise Convolution Kernel Size ‑ (31)

Number of Params 12.3 M 13.6 M
Epoch 137 65

The Conformer refers to an encoder specifically designed for extracting local and
global features from input data, and it does not have a clearly defined counterpart for a de‑
coder (e.g., the Transformer consists of a Transformer encoder and Transformer decoder).
To implement a Conformer‑based AI patient model, a decoder is essential for translating
the encoded information into language. In this paper, we constructed a Conformer‑based
AI patient model that utilizes a Transformer decoder as a decoder of the Conformer.

2.3. Performance Evaluation
In order to evaluate the model’s performance, the Bilingual Evaluation Understudy

(BLEU) score and Word Error Rate (WER) were adopted as evaluation metrics. The BLEU
score evaluates how much the sentence predicted by the model matches the correct sen‑
tence [38]. The BLEU score is calculated using the following equation:

MPn =
∑g∈h min(C(g,h),C(g,r))

∑g∈h C(g,h) ,

BP =

{
1, if h > r

e1− h
r , if h ≤ r

BLEU = BP × exp
(

N
∑

n=1
wn log MPn

)
,

Here, MPn represents modified n‑gram precision, and C represents the number of
times the word g in n‑gram contained in a given sentence appears. h means the predicted
sentence, and r means the correct answer sentence. BP is a brevity penalty, which prevents
situations where a high BLEU score is obtained when the h is shorter than r. N is the
maximum length of the n‑gram. wn means the weight applied to each n‑gram, and in this
experiment, a weight of 0.25 was applied to all n‑grams.

WER evaluates word‑level errors between real and predicted sentences. WER is cal‑
culated as follows:

WER =
I + D + S

N
,
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Here, I represents the number of words incorrectly added to the predicted sentence,
and D means the number of words that do not appear in the predicted sentence. S is the
number of words substituted between the correct sentence and the predicted sentence, and
N is the total number of words in the correct sentence.

The AI patients were trained using both common data and personalized data. The
common data comprise 67,124 pairs of question‑and‑answer data collected from AI‑Hub,
while the personalized data for one standardized patient created through the data genera‑
tor consist of 18,378 pairs. The training dataset contains 78,150 data pairs, which consist of
67,124 data pairs from the common data and 11,026 data pairs accounting for 60% of the
total personalized data. Due to the primary objective of the AI patient model being the ac‑
curate prediction of answers to diagnostic questions, both the validation and test datasets
were comprised exclusively of personalized data. Each of these datasets contains a total of
3676 data pairs, which correspond to exactly half of the remaining personalized data.

We analyzed the impact of model structures on performance with a focus on the Con‑
former and Transformer. Figure 5 shows the loss and performance of eachmodel in the val‑
idation dataset. In Figure 5, the blue color represents the Transformer model, and the red
color represents the Conformer model. The left plot demonstrates that the Conformer has
a lower loss value and converges faster than the Transformer. This trend is also observable
in the right plot. In the right plot, the BLEU score is represented by a solid line, while the
WER is denoted by a dotted line. The Conformer’s BLEU score quickly surpassed 90% be‑
fore 10 epochs and maintained the convergence value, whereas the Transformer exhibited
a gradual upward trend up to 60 epochs and ended prematurely. Similarly, for WER, the
Conformer showed a distinct downward trend, while the Transformer stalled with a rela‑
tively gentle downward trend. The quantitative performance of eachmodel is presented in
Table 5. In the test dataset, the Transformer’s results were 2.58% lower in BLEU score and
2.94% higher in WER compared to the results in the validation dataset, achieving 92.21%
and 8.08%, respectively. The Conformer also exhibited a slight decrease in performance in
the test dataset compared to the validation dataset, but ultimately achieved a BLEU score
of 96.13% and a WER of 1.34%. This demonstrates a performance improvement of 3.92%
and 6.74% over the Transformer, respectively.
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Table 5. Quantitative performance results obtained using the validation and test datasets.

Model
Validation Test

BLEU (%) WER (%) BLEU (%) WER (%)

Transformer 94.79 5.14 92.21 8.08
Conformer 96.40 1.04 96.13 1.34

3. Results and Discussion
The performance gap between the Transformer and Conformer models might be at‑

tributed to the model size. To verify this hypothesis, we examined whether performance
improvement would be observed when the parameter size of the Transformer was equal
to that of the Conformer. Table 6 provides a concise summary of the number of layers
and parameters implemented in the Transformer model, as well as the corresponding per‑
formance outcomes. The experiment revealed that within the conditions of the utilized
dataset, as the Transformer’s parameters approached those of the Conformer, performance
degradation occurred in the validation dataset due to overfitting on the training dataset.

Table 6. Performance results from increasing the parameters of the Transformer model.

Number of Layers Number of Params
Validation

BLEU (%) WER (%)

[5, 5] 12.3 M 94.79 5.14
[6, 6] 13.6 M 87.38 9.71
[7, 7] 14.9 M 52.82 46.92

Table 7 presents the answers generated by each model for the questions in the test
dataset. The top two rows of the Transformer model’s results inferred answers that reflect
the provided SP information, suggesting that the Transformer model can make accurate
predictions for questions related to personalized data that are distinct from common data.
In contrast, rows three to six display responses that do not comply with the given scenario.
This result suggests that when the model encounters personalized data similar to common
data, the inference outcome tends to be biased towards the common data. As an example,
the Transformer‑based model often generates responses such as “yes,” which frequently
appear in common data. This indicates that although the Transformer model may possess
basic communication capability, it lacks the proficiency needed to understand the context
required for engaging in natural dialogues with humans.

In the case of the Conformer, examining the first three rows from the top reveals that,
unlike the Transformer, the Conformer can infer answers that align with the patient’s role
and comprehend the intent of the questions. However, the Conformer model also pro‑
vided out‑of‑context answers for certain question types. Rows four to six of the Conformer
results in Table 7 pertain to questions about the SP’s pain location. While the fourth row
demonstrates comprehension of the question’s intent and provides an appropriate answer,
the fifth and sixth rows present unrelated answers despite being the same question type.
Both the Conformer and Transformer models exhibited bias due to the abundance of data;
however, the Conformer showed amore robust performance compared to the Transformer.
This finding confirms that the model architecture, which incorporates local and global in‑
formation, plays a crucial role in enhancing learning efficiency. Through this experiment,
we confirmed that the Conformer structure demonstrates superior performance not only
in speech data but also in text format, surpassing the Transformer. Moreover, we veri‑
fied that the Conformer‑based AI patient can play a more natural patient role than the
Transformer‑based model when utilized in clinical practice.



Bioengineering 2023, 10, 615 13 of 15

Table 7. The answer prediction results for the Transformer andConformermodels on the test dataset.

Model Questions Answers Predicted Answers

Transformer

Sir, then I will diagnose you from
now on. Yes, thank you. Oh, yes I see.

Sir, on a scale of 10 for pain, how
much pain did you get? It’s like 7 points. It’s like 7 points.

Patient, do you ever feel discomfort
in your teeth? It hurts when food gets stuck. I’ve been sick since a week ago.

Hello, What is your name? My name is Taeju Han. Yes.

Hello, when did your symptoms
first start? I’ve been sick since a week ago. Today.

Patient, how long did the pain last? It’s like the pain disappears when
the food is gone.

I don’t think there is much of
anything like that.

Conformer

Hello, what is your name? My name is Taeju Han. My name is Taeju Han.

Hello, when did your symptoms
first start? I’ve been sick since a week ago. I’ve been sick since a week ago.

Patient, how long did the pain last? It’s like the pain disappears when
the food is gone.

I don’t think there is much of
anything like that.

Patient, which tooth is bothering
you that made you come here
today?

My lower right molar hurts. The lower right molar is in pain.

Which part of the tooth is
inconvenient? My lower right molar hurts. Yes, I am in Jeju Island.

What tooth do you have pain in? My lower right molar hurts. Yes, I see.

Although the Conformer‑based AI patient also exhibited challenges in comprehend‑
ing the intent of certain types of questions, we believe that if more systematic data col‑
lection is conducted for clinical diagnosis, these issues can be effectively addressed. Fur‑
thermore, this approach holds potential to serve as an educational system for professional
occupations not only in dentistry but also in other fields.

4. Conclusions
This study proposed a Conformer‑based AI patient and Korean SP scenario data gen‑

erator for dental clinical diagnosis simulation. The proposed data generator can generate
questions for doctors to understand a patient’s condition and responses that reflect the
SP’s information. Additionally, through a data variation approach, it can create a variety
of syntactic expressions. The utilization of this data generator has the advantage of en‑
abling the creation of standardized patients for clinical training and collecting real clinical
diagnostic question and answer data without any cost or time constraints. For AI patient
training, common data containing responses to natural conversations and personalized
data, including clinical information specific to the designated patient role, were used. To
confirm the learning efficiency of the Conformer structure based on these data, we per‑
formed a performance analysis comparing it to the Transformer, which had a significant
impact on NLP, using BLEU score and WER as evaluation metrics. As a result of our
experiment, it was confirmed that the Conformer outperformed the Transformer in gen‑
erating improved responses. The use of AI patients in SP simulation has the potential to
enhance the limited clinical diagnosis practice environment faced bymedical professionals
due to environmental, cost, and recruitment challenges. Moreover, this approach could be
extended to other fields of medicine and nursing through additional data collection and
refinement. Our study demonstrates the implementation of standardized patients by in‑
tegrating deep learning with dental clinical education. We hope that this approach can
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lead to significant transformations in medical education. In future research, we intend to
incorporate ASR, TTS, and VR systems to develop a simulated clinical diagnostic system
that closely mirrors real‑world environments.
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